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The time evolution of a damped quantum particle is discussed. Dissipation is 
modeled by the bilinear coupling to a set of harmonic oscillators. Using a 
functional integral technique that accounts for initial correlations between the 
particle and the reservoir, one can express the dynamics of the damped particle 
entirely in terms of equilibrium correlation functions. The long-time behavior of 
these correlations is determined for memory damping arising from the coupling 
to a reservoir with spectral density 1(o9) oc co ~ at low frequencies, where a > 0. 
The time evolution of nonequilibrium initial states of the damped particle is dis- 
cussed. At finite temperatures an initially localized state is found to spread sub- 
diffusively or superdiffusively, depending on a. For ~ > 2 the damping becomes 
ineffective for long times, and the width of a state grows kinematically. At zero 
temperature and for ~ < 1, an initially localized state remains localized for all 
times. For a >.>-1 the state spreads, but with a slower rate than at finite tem- 
peratures. Study of arbitrary initial states indicates that the process is ergodic at 
finite temperatures only for a ~< 2 and at zero temperature for 1 ~< ~ ~< 2. 

KEY W O R D S :  Dissipative quantum systems; Brownian motion; localization; 
anomalous diffusion; memory effects; functional integral techniques. 

1. I N T R O D U C T I O N  

I n  r e c e n t  y e a r s  c o n s i d e r a b l e  r e s e a r c h  h a s  b e e n  d i r e c t e d  c o n c e r n i n g  t h e  

i n f l u e n c e  o f  a d i s s i p a t i v e  e n v i r o n m e n t  o n  t h e  d y n a m i c s  of  a q u a n t u m  

sys tem.  W h i l e  m o s t  of  t h e  c o r r e s p o n d i n g  w o r k  in  t h e  i 9 6 0 s  a n d  1970s 

e n v i s a g e d  a p p l i c a t i o n s  in  q u a n t u m  o p t i c s  ~1) a n d  s p i n  r e l a x a t i o n  t h e o r y  ~2) 

a n d  e m p l o y e d  a p p r o x i m a t i o n s  s u i t a b l e  to  t h o s e  fields,  r e c e n t  i n t e r e s t  h a s  
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focused on the effect of strong damping and/or low temperatures, where the 
environmental coupling may not be treated perturbatively. In the low-tem- 
perature regime dissipation has been found to give rise to a number of 
novel quantum effects. Caldeira and Leggett (3) showed that the tunneling 
escape from a metastable state at T=  0 is exponentially suppressed in the 
presence of damping. Subsequently, the effect of finite temperatures was 
discussed (4) and the predicted thermal enhancement of the tunneling rate of 
a damped system was observed experimentally. (5) Further, dissipation was 
found crucially to affect quantum mechanical coherence, (6) leading to dis- 
sipative phase transitions such as the localization in a periodic potential (v) 
and global phase coherence in granular superconductors. (8) Even in linear 
systems low-temperature anomalies such as algebraic long-time tails in 
correlation functions were found. (9) 

Most of the recent theoretical work in the field has relied heavily on 
the functional integral representation of quantum mechanics introduced by 
Feynman. (~~ If dissipation is modeled by a bilinear coupling of the system 
under consideration to a heat bath consisting of an infinite set of harmonic 
oscillators, the functional integral method allows for an exact elimination 
of the environmental degrees of freedom. For a study of nonequilibrium 
properties of a system, such as the relaxation of nonequilibrium initial 
states, the influence functional technique of Feynman and Vernon (11/ is 
particularly useful. At present, however, the applicability of the method 
suffers from a somewhat unphysical factorization assumption for the initial 
state introduced in the original paper (H) and retained in most of the newer 
work. (6'12) A first effort toward a more realistic description was made by 
Hakim and Ambegaokar, ('3) who treated a free Brownian particle in the 
presence of frequency-independent or Ohmic damping. However, for most 
situations of practical interest a more general approach is required. ('4) 

In the present paper, we study the dynamics of the simplest dissipative 
quantum system, namely a particle damped through the coupling to a heat 
bath enviroment, but not subject to any potential forces. This is the 
problem of free Brownian motion. We allow for arbitrary frequency depen- 
dence of the damping, and it turns out that it is just this frequency depen- 
dence that strongly influences the dynamics of the system. In Section 2 we 
present a generalization of the Feynman-Vernon theory which accounts for 
initial correlations between the particle and the environment. Within this 
approach the preparation and relaxation of a large class of initial states can 
be treated in a realistic way. Starting from a microscopic model, we deter- 
mine the functional integral representation of the reduced density matrix of 
the Brownian particle valid for arbitrary temperatures and arbitrary 
damping strength. 

The remaining threefold functional integral over the particle coor- 
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dinates is solved exactly in Section 3. We show that the nonequilibrium 
dynamics can be expressed entirely in terms of equilibrium correlation 
functions of the Brownian particle. For arbitrary frequency dependence of 
the damping, these correlations are given in terms of their Laplace trans- 
forms. 

In Section 4 we study the time evolution of correlation functions. First, 
we deal with the exactly soluble case of frequency-independent damping, 
where connections with the previous findings of Hakim and 
Ambegaokar (13) can be made. Subsequently, we discuss the general case of 
frequency-dependent friction. The long-time behavior of the correlations is 
found to depend only on the low-frequency properties of the damping, 
except for a mass renormalization, which occurs for small densities of low- 
frequency environmental modes. For a wide range of damping mechanisms, 
including those of interest in experiments, the asymptotic time dependence 
of the correlation functions is worked out explicitly. 

In Section 5 we employ these results to discuss the relaxation of non- 
equilibrium initial states. As an example, we study the time evolution of an 
initially localized wave packet. The long-time behavior depends strongly on 
the dissipative mechanism. Diffusive spreading of the state is found only in 
the Ohmic case. For other forms of the damping, the behavior can be sub- 
diffusive or superdiffusive, depending on whether the low-frequency friction 
is stronger or weaker than in the Ohmic case. Moreover, at zero tem- 
perature the damping can lead to a localization of the state even though 
the particle is not bounded by an external potential. Some of the results in 
this section were obtained in collaboration with G.-L. Ingold and published 
elsewhere in short form. (15) Finally, we discuss the long-time behavior of 
arbitrary initial states quite generally. We find that the process is not 
always ergodic. The conditions under which the effects of the preparation 
vanish asymptotically are given. 

2. F U N C T I O N A L  INTEGRAL REPRESENTATION OF THE 
REDUCED DENSITY M A T R I X  

2.1. Microscopic  Model  

The model of a particle moving in a viscous medium that causes fric- 
tion and exerts a fluctuating force upon the particle is used not only in its 
strict mechanical context, but has also led to an understanding of various 
other systems where fluctuations are important. Examples of phenomena 
where the analogy to Brownian motion is useful include macroscopic quan- 
tum tunneling in Josephson systems, (3-5) the diffusion of injected particles 
in solids, (16) or chemical reactions/17) Here, we exclusively consider a 

822/49/3-4-24 
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mechanical particle of mass M, momentum p, and coordinate q, but the 
application to other phenomena may require an altogether different inter- 
pretation of these variables. The particle is free inasmuch as it is not subject 
to an external potential. Dissipation is introduced via a bilinear coupling to 
a set of N harmonic oscillators characterized by masses rn n, frequencies c%, 
momenta Pn, and coordinates qn. Writing the interaction such that there is 
no coupling-induced renormalization of the potential, (3) we find for the 
corresponding Hamiltonian 

2 2 ( 
H = 2 ~  + ~ [- pn 1 c~q ,]2] (2.1) 

An environmental coupling of this form has been widely used to model 
dissipation,(3.4,6 9,z2j3)2 and allows for a description of many damping 
mechanisms of practical interest. However, the form (2.1) is not yet suitable 
for our purposes, since a spatial translation of the entire system would 
change its energy. Clearly, a Hamiltonian describing free Brownian motion 
must be translationaUy invariant. To avoid this problem, we make use of 
the fact that the environmental parameters do not separately affect the 
motion of the Brownian particle. Rather, only the combination c]/rn,con 
enters the description of the reduced dynamics. Hence, we may choose the 
coupling constants cn=mnco ] without restricting the possible frequency 
dependence of the damping. The Hamiltonian then takes the translationally 
invariant form 

2 2 ] 
H = _ ~ M + ~ F p .  1 .=l L~m +-~m.e)](x.-q) 2 (2.2) 

In a mechanical model this system can be visualized as a particle that has 
many masses attached to it with springs (Fig. 1). The model described by 
the Hamiltonian (2.2) was also studied by Hakim and Ambegaokar. (13) 

2.2. Preparation of  the  Initial S ta te  

In order to determine the time evolution of the system, the model 
Hamiltonian (2.2) has to be supplemented by information about the initial 
state of the system. In previous work, (6'H'12) it was frequently assumed that 
the initial density matrix factorizes into separate contributions from the 
Brownian particle and the environment. Then the coupling is switched on, 
and the relaxation toward the equilibrium state of the coupled system is 

2 See Ref. 18 for a review of earlier work. 
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Fig. 1. A mechanical model of the Hami!tonian (2.2)�9 

discussed. In real physical systems, however, such a switching on and off of 
the interaction is very rarely possible. Hence we use a more realistic 
prescription of how the initial state should be prepared. The starting point 
is the equilibrium state 

W e = Z~ 1 exp( - fill) 

of the entire system at inverse temperature/~ = 1/kB T. Here, 

(2.3) 

Z~ = tr [exp( - flH)] (2,4) 

is the partition function of the system. An ensemble of systems described by 
the state (2.3) may generally be realized by waiting long enough. Since we 
are dealing with a free Brownian particle, there is a subtlety involved at 
this point. Clearly, the equilibrium density matrix of a particle that is not 
localized cannot be normalized on an infinite interval. Therefore, the par- 
tition function Z~ diverges for a free Brownian particle. However, it is only 
the trace over the particle coordinate that is divergent, whereas the trace 
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over the reservoir degrees of freedom is well defined. Furthermore, the 
equilibrium density matrix of the Brownian particle will be distributed 
homogeneously in position space. Hence, it is natural to normalize the 
state on an interval of length L. Accordingly, for the system under 
consideration we replace (2.3) and (2.4) by 

where 

W~ = (N~)- '  exp ( - f i l l )  (2.5) 

fql 
O+ L 

N~= dq(ql trR[exp(--flH)] [q) (2.6) 
o 

Because of the translational invariance of the Hamiltonian, qo is arbitrary 
and the normalization factor N~ is in fact proportional to L. It is now 
convenient to introduce a density matrix that is independent of the length 
of the normalization interval, namely 

l~- B = . ~ 1  exp ( - f i l l )  (2.7) 

where 

?~  = {qol trR[exp(--/3H)] [qo) (2.8) 

is independent of qo. The equilibrium state normalized on the interval L 
may then be written as 

W~ = L -1 W e (2.9) 

Nonequilibrium initial states may now be prepared by means of a pertur- 
bation influencing the Brownian particle. The resulting initial density 
matrix Wo may frequently be written as 

Wo=Z oj (2.10) 
J 

Here, Oj and Oj are operators acting on the Brownian particle, but not on 
the environmental degrees of freedom. This prescription of how an initial 
state should be prepared describes several situations of practical interest: 

l. We can start out with the equilibrium system, add a time-depen- 
dent external force to the Hamiltonian, and study the response of the 
system to this force. 

2. We may perform a measurement on the Brownian particle leading 
to a reduction of the state. In this case the operators O j, Oj project on the 
measured value or interval. 
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3. A correlation function (A( t )B)  can formally by related to the 
expectation value of the observable A at time t with respect to the initial 
"ensemble" BPP~. While BffZr is generally not a Hermitian operator, it still 
belongs to the class of initial states (2.10) and can be described within the 
theory developed below. 

In particular, initial states of the form (2.10) include initial 
correlations between the Brownian particle and the environment that are 
neglected in a theory based on the factorization assumption. These 
correlations may strongly influence the subsequent time evolution. (13'~9) In 
coordinate representation we write (2.10) as 

Wo(qi, x,,,, q;, x'n,,, O) 

=fd4fd4'2o(qi ,  4, q~,4' ) ff'~(4, x~,,,4',x'n,i) (2.11) 

The function 

2o(q,, q, q;, 4 ' ) = ~  (qtl Oj 14)(4'1 o j  [q;) (2.12) 
J 

will be called preparation function from now on, since it contains complete 
information about the initial state. Tracing (2.11) over the reservoir, we 
obtain the initial reduced density matrix as 

where 

P(qi, q;, O)= (qi[ trR(Wo) [q;) 

r d4 f dO' ' q') fi,(4, 4') (2.13) = j . 2o(qi, q, qi, 

fie = trR( fie e) (2.14) 

is the reduced state of the Brownian particle associated with (2.7). Again, 
p} = fiB/L is the reduced equilibrium state normalized on an interval of 
length L. In most cases of interest the initial state of the particle is 
localized, so that the initial density matrix 14o can be normalized on the 
infinite interval. In this case it is convenient to include the proper 
normalization of the state in the preparation function, which then has the 
property 

f aq d 4 d 4' 2o(q, 4, q, 4') fi,(q, q') = 1 (2.15) 

While the reduced equilibrium density matrix r q') depends only on the 
relative coordinate 4 - q ' ,  the preparation function will break the trans- 
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lational invariance in general. Finally, we note that the preparation 
function (2.12) gives a more detailed description of the initial state than the 
reduced density matrix (2.13). In addition to information about the 
Brownian particle, the preparation function also contains information 
about the initial correlations with the heat bath. 

2.3. Functional  Integral  Representat ion of  the Density Mat r ix  

The density matrix at time t follows from the Liouville equation as 

W(t) = exp( - iHt/h ) Wo exp( iHt/h ) (2.16) 

Using (2.11) for the initial state, we can now write the coordinate represen- 
tation of this relation in terms of functional integrals. The time evolution 
operator takes the form (1~ 

exp( 
(2.17) 

where we have to sum over all paths q(s), xn(s) (n = 1,..., N) in real time 
0 ~< s ~< t connecting q(0) = q~, x,(0) = xn,i with q(t) = qf, xn(t) = x , , i .  The 
path probability is weighted according to the action 

S[q, xn] = ds L(q, Xn) (2.18) 

where L(q, xn) is the Lagrangian associated with the Hamiltonian (2.2). A 
corresponding functional integral representation holds for the adjoint time 
evolution operator exp(iHt/h), where both the paths and the endpoints will 
be distinguished by primes. 

Further, the equilibrium density matrix (2.7) may be written as a 
Euclidean function integral according to ('~ 

( 1 - , --_if 1 E - lYV~(gg, x , , i , q ' , x , , i )=N~ ~ D [ ~ ] D [ f f , ] e x p  - ~ S  [q, 2 , ]  (2.19) 

where the sum is over all paths el(z), )?n(v) (n = 1,..., N) in imaginary time 
0 ~< r ~< h/~ connecting 4(0) = ~', ~?,(0) = x'n,i with q(hfl) = ~, 4,(hfl) = xn,i. 
Here, the weight factor is determined by the Euclidean action 

SE[q, 2 , ]  = f ~  clv Le(q, 2,)  (2.20) 
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where LE(q, 2.) is the Euclidean Lagrangian, which follows from the 
ordinary Langrangian by a Wick rotation from real to imaginary time. In 
fact, for the present problem Le(O, ~ )  is simply given by the Hamiltonian 
(2.2) if we express the momenta in terms of time derivatives of the 
conjugate coordinates. 

Collecting these results, we obtain the density matrix (2.16) in the 
form 

t ! 

W(qi,  X.,r, qr , x . , i ,  t) 

= f dq, dq; dO dO' dx..~ dx'.., 20(q,, q, q;, q') 

x N#'  f D[q] DEx.] DEq'] D[x'.] D[O ] DE2.] 

xexp (SEq, x . ] - S E q ' , x ' n ] ) - - ~ S  [0, 2 . ]  (2.21) 

which is a (3N+ 3)-fold functional integral over all paths q(s), xn(s), q'(s), 
x'n(s) (n = 1 ..... N) in real time 0 ~<s ~<t connecting q(0)= qi, x.(O)=x.,/,  
q'(0) = q;, x'.(0) = x'n,e with q(t) = qs, x.(t) = x~, s, q'(t) = q}, x'.(t) = x'.,y 
and all paths 0(z), ~?.(z) (n = 1,..., N) in imaginary time 0 ~< �9 ~< hfl satisfying 
the boundary conditions q(0)= 0', 2~(0)= x'.,i and O(hfi)= q, 2.(hfl)= x.,i. 

2.4. E l iminat ion of  the  E n v i r o n m e n t  

Since the number of environmental modes is very large, the density 
matrix (2.21) contains much more information than we could hope to 
process or would be interested in. Rather, we want a closed description for 
the dynamics of the reduced density matrix. For the model under 
consideration the trace over the reservoir coordinates can indeed be 
performed, since the corresponding functional integrals are Gaussian and 
can be evaluated exactly. (1~ The Straightforward though slightly tedious 
calculation leads to an expression for the reduced density matrix at time t 
that is valid for arbitrary damping strength and arbitrary temperatures. We 
write it in the form 

p(qs, q}, t) = f dq, dq; dO dO' 

• J(qf, q'r, t, q,, q;, gl, q') 2o(qi, q, q~, 27') (2.22) 
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The newly introduced function 

Y(qf , q), t, qi, q;, (t, 4') 

= Z-a f D[q]D[q'] D[~] 

xexp{~h (oz- ( l ' z ) -~-~Z}  F[q,q',q] (2.23) 

will be called the propagating function, since it contains the whole 
dynamical information about the Brownian particle. In this expression, 
J(ql, q), t, qi, q;, q, q') is defined as a triple functional integral over all real 
time paths q(s), q'(s), O<<.s<<.t, and all imaginary time paths q(z), 
0 <~ z ~ hfl, satisfying the boundary conditions given above. The prefactor 

Z = N~ ~I 2 sinh o~.h~ (2.24) 
n = l  

normalizes the state, while 

( 1  { f f~dzf]d~K(_iz+i~)gl(r)~l(~ ) F[q,q', q] =exp - ~ - 

-}- dT ~ ~q2(T) 

(.hfl (.t 

--iJo d~Jo dsK*(s-ir)q(r)[q(s)-q'(s)]  

fo;o + ds du [q(s)--q ' (s)][K(s-u)q(u)-K*(s-u)q ' (u)]  

t 1 2 q,2(S)]}) (2.25) + i fo dS-~ #[q ( s ) -  

is the so-called influence functional describing the effects of the environ- 
ment on the particle's motion. Here, we introduced the kernel 

K(O) = ~. 1 3 cosh[oo.(�89 - iO)] 
=1 ~ m.e). sinh@o.hfi) (2.26) 

which is defined for complex times 0 = s -  iv, 0 ~< z ~< h//. Finally, the terms 
with 

N 
# =  ~ m.(.o 2 (2.27) 

n = l  
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compensate for the coupling-induced potential renormalization inherent in 
the local part of K(O). 

In (2.22) the two sources of information that we need to determine the 
time evolution of the density matrix are obvious. The initial state is charac- 
terized by the preparation function 20(qi, q, q~, q'), which describes the 
deviations from equilibrium. The dynamical information is contained in the 
propagating function J(qF, qy, t, qi, q'i, ~, p'). Knowledge of the 
propagating function allows for an evaluation of the dynamics of arbitrary 
initial states in terms of quadratures. 

3. EVALUATION OF THE P R O P A G A T I N G  FUNCTION 

In this section we evaluate the propagating function governing the 
time evolution of a free Brownian particle coupled to a heat bath with an 
arbitrary density of modes. Since dissipation always requires the coupling 
to a (quasi)continuum of environmental modes, we first introduce the 
spectral density 

~ 1 m,~03fi(co_~on) (3.1) = 

r t = l  

of the reservoir, which will be considered a continuous function of the 
frequency from now on. We see that despite our choosing the coupling 
constants c,, so that the Hamiltonian is translationally invariant, we can 
still model any desired frequency dependence of the spectral density by a 
suitable choice of the oscillator masses ran. The kernel K(O) and the con- 
stant # occurring in the influence functional (2.25) can be written in terms 
of I(~o) as frequency integrals. Moreover, the constant/~ can be eliminated 
altogether by partial integrations that split off the local parts in the double 
integrals in (2.25). Introducing the sum and difference coordinates 

x = q - q'; r = (q + q')/2 (3.2) 

we can write the propagating function in the form 

J(x f ,  rf ,  t, xi, ri, g l , ~ f ) = Z - t f D [ x ] D [ r ] D [ g l ] e x p ( ~ X [ x , r ,  gl]) 

(3.3) 

where the functional integral is over all real time paths x(s), r(s), 0 <~ s <~ t, 
connecting x(O)=x~=qe-q~,  r(O)=r~=(qe+q;)/2 with x ( t ) = x y =  
q r - q s ,  r ( t )=r f=  (qs+qj-)/2 and all imaginary time paths ~](r) specified 
above. The weight factor contains the effective action 
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. l'h~ M . 2 l ff~d~ f ~ d a  k( z SEx, r,q]=~jo &-fq +~ -~)q(~)q(~)] 

+ ,f]' d~ fo dS K*( s -  ir) gt(z) x(s) 

+o! ds M2i - ds Mx(s) ds du 7(s - u) r(u) 

+ -~ ds du K'(s - u) x(s) x(u) 

In this expression K'(O) is the real part of the kernel (2.26), and 

(3.4) 

2 fo - de) I(co) cos(e)t) (3.5) 7(t)=~ 7 5 

is the damping kernel describing the frictional influence of the environment. 
The function k(~) in (3.4) results from a partial integration of the influence 
kernel. It can be written in terms of the Laplace transform 

~(z) = dt 7(0 exp ( - z t )  = de) I(o9) 2z 
09 (.0 2 -}- Z 2 

(3.6) 

of the damping kernel as 

M ~ Iv.]y(rvnl)exp(ivnr) k(~) =V . . . .  (3.7) 

Here, v n = 2nn/hfl are the Matsubara frequencies. 

3.1. The  M i n i m a l  Ac t ion  

Since the system under consideration is linear, the dependence of the 
propagating function on the boundary values q, c]', xi, ri, x F, and rf can be 
determined completely by considering those paths that minimize the 
effective action (3.4). The equations of motion for these minimal action 
paths are readily found to read 

M ~ -  ff~da k ( v - a )  ~(a)= - i  fods K*(s -  it) x(s) (3.8) 
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for the imaginary time path ~(r), and 

 t +M--dfsdu (s-u) r(.) ijo ds 3o = du K'(s - u) x(u) 

J? + d~ X*(s - i~) q(~) (3.9) 

af, 
M 2 -  M--~s" d u T ( u - s )  x(u)=O (3.10) 

s 

for the real time paths r(s) and x(s). In view of the evolution equation 
(3.9), it becomes obvious why 7(t) is called the damping kernel. 

Let us first consider the dynamics in imaginary time. Since we need a 
solution of (3.8) only in the interval 0 <~ r <~ hfi, it is convenient to expand 
~](r) in a Fourier series according to 

0(,) =~fl ~ tin exp(/vnr) (3.11) 
n ~  o o  

The Fourier coefficients q, are determined in Appendix A as functions of 
the endpoints ~ and ~' and as functionals of the real time path x(s), which 
appears as an inhomogeneity in (3.8). The result of this calculation is 

h t ~ ,  
?lo=-~(gl+gf)+i fodSX(S ) ~(s)[v~ +lv~l ~(Iv~l)] -~ (3.12) 

n =  - - 0 ( 3  

~. = Ev~ + lv.,I f ( Iv . l  )] -~ tiv,,(c~- c7') 

[ ]} - i f odSX(S )  ~,(s)+v 2 --~s(,(s) for n # 0  (3.13) 

where the prime denotes the omission of the n = 0 element in the sum. 
Here, we have introduced the functions 

1 } 
C~(s)=~lv.I , du~(u) {exp[-l%(s+u)[]+exp[-lv~(s-u)]] (3.14) 

~ 0  

When the result is inserted in (3.4) the effective action emerges as 

Z' [ x, r3 = iMP2 + -2i " f ' ( 4 -  0') ~ Mjo  ds Jo du R(s, u) x(s) x(u) 

+ Jo ds M xr - x(s) du 7(s - u) r(u) 

+ x(s) I i (gl + ~f ) 7 ( s ) - i (g l -g f )  C(s)l  } (3.15) 
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where we introduced the frequency 

(2=~-~B[l+ ~ '  [[Vn'+~(lVnl)] l]~([vnl)] (3.16) 
n =  --oo 

and the functions 
oo d 1 ~ ,  

C(s) - ds h[~ n [1)12 "~- Ivn[ ~ ( I v n l  )] - ~  ~ n ( s )  ( 3 . 1 7 )  
= - o o  

1 , 1 0% 
R(s, u )=~g(s -u )+~n_~o  ~ [v2 + lull ~(tvA)] 1 ~(s)~n(u) 

1 c? 2 ~, 
hBasau=' [v~+lv.lf(Iv.I)] iv,;2~(s)~n(u)] (3.18) 

--oo 

The real time equations of motion (3.9) and (3.10) are also readily solved. 
The Green's function of (3.9), denoted by G+ (s), satisfies the homogeneous 
equation with the initial conditions G+ (0)= 0 and G+ (0)= 1 and has the 
Laplace transform 

(~+ (z) = [z 2 + z~(z)] -1 (3.19) 

The equation of motion (3.10) for x(s) can he viewed as the backward 
equation to the homogeneous part of (3.9), which means that it has time- 
reversed solutions. The backward Green's function G (s) is connected with 
the forward propagator G§ by 

G + ( t - s )  G + ( t ) - G  +(t) G + ( t - s )  
G (s)= (3.20) 

G +(t) G +(t)-G2+(t) 

The solutions of (3.9) and (3.10) satisfying the boundary conditions 
x(O)=xi, r(O)=ri, x ( t )=x f ,  and r( t )=rf  are now readily determined. 
Inserting these solutions into the action (3.4), we obtain after some algebra 

~Y'(Xf, rf , t, Xi, ri, X, r) 

s 2 
= iM-~ ~ - iM2[xiC + (t) + xf  C-  (t)] 

d+(t) 
+ M[xf(rf  - F) + xi(r~- ~)] - -  

G+(t) 

_ M [ x i ( r f _ F )  ~ 1 , +  x f ( r i _ f )  G l_(t)] 
k ti+tt) 

i 
+~M[x~R++(t )+2x~xyR+ ( t ) + x } R - - ( t ) ]  (3.21) 
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where we introduced the functions 

C+(t)= fs dsC(s) G +( t - s ) .  fo _ _  G (t) C ( t )= dsC(s)G (s) (3.22) 
' a ( t )  

R+ (t)=f ds(duR(s,u) G+(t-s)G (3.23) 
J0 Jo G +(t) G (t) 

while R § § (t) and R (t) are defined analogously. The result (3.21) makes 
obvious that the minimal action depends only on relative coordinates. With 
(3.21) the dependence of the propagating function on the endpoints is com- 
pletely determined according to 

J(xz, rf, t, xi, r~ ,~ , i~)=-~exp  ~(xf ,  rz, t,x~,ri, Y,? ) (3.24) 

Here, N(t) is a time-dependent normalization factor, which can be 
evaluated by performing the functional integration over the fluctuations 
about the minimal action paths. On the other hand, this factor may be 
obtained more conveniently from the fact that the trace of a state is conser- 
ved. The reduced density matrix at time t may now be written [cf. (2.22)] 

p(xf, rf, t) = f dxi dy d2 d37 J(xf, y, t, x~, ~, 37) 2(rf - y, x~, 37, 2) (3.25) 

where, apart from (3.2), we introduced the relative coordinates 

y=r f - r~ ;  37=r~-?  (3.26) 

The propagating function J(xf ,  y, t, xi, ~, 37) is obtained from (3.24) when 
the action (3.21) is expressed in terms of relative coordinates, and the 
preparation function 2(r, xi, 37, :~) is related to the function 2o(q~, q, q~, 4') 
[cf. (2.12)3 by 

2(r, xi, P,~)=2o(r+xi/2, r-y+Yc/2,  r - x j 2 ,  r - j - ~ / 2 )  (3.27) 

3.2. Relat ion of  the Propagat ing Funct ion to the Displacement  
Correlat ion Funct ion 

Although the time evolution of an initial state is determined in prin- 
ciple via the propagating function (3.24), the interpretation of this result is 
hindered by the occurrence of integrals such as (3.22), and (3.23), the 
physical meaning of which is unclear. In order to get more insight, it is 
useful to connect the result (3.24) with physical properties of the Brownian 
particle. 
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Let us first evaluate the unknown normalization factor N(t) in (3.24). 
To that aim we study the time evolution of the equilibrium state W~ nor- 
malized on an interval of length L. The preparation function then follows 
from (2.12) and (3.27) as 

Z~(r, x;, 37, 2 ) = L  I(~(Xi--)~) (~(37) (3.28) 

Now, the equilibrium average ( A )  of an observable may be defined as 

~L/2 
( A )  = lim dq (ql trR(AW~)Iq) (3.29) 

L---~ oo ~ L/2 

Clearly, the expectation value of the unity operator should remain 1 for all 
times. Using (3.25), we have 

(15, 

x J(0, y, t, x,, 2, 37) 2~(rr - y, xi, )7, 2) 

= [' dxi dy J(O, y ,  t, x i ,  x i ,  O) 
d 

(3.30) 

Inserting the minimal action (3.21), we obtain from the integral over y a 
6-function in xi. Hence, we find 

N( t )  = 2rc(h/M) [G+(t)[ (3.31) 

This result can also be obtained by evaluating the functional integral over 
the fluctuations about the minimal action paths explicitly. 

Next, we consider the propagating function for short times. Clearly, 
the functions (3.22), (3.23) in the action (3.21) vanish for t ~ 0 .  Further, 
the initial condition G+(0) = 0  and G+(0) = 1 yield G+(t) ~- G_(t) ~- t for 
small times. The propagating function thus becomes 

J(x s,  y, t, xi, 2, 37) 

- 2~ht exp --~ (x s -  x~) y + O(t) exp - ~ 22 (3.32) 

In the limit t--* 0 the first exponential combines with the prefactor to give 
two 6-functions and we obtain 

J(xs, y, O, xi, 2, y ) = 6 ( x s - x i )  6( y) exp - -~ff-2 z (3.33) 
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Combining this result with (3.25) and (3.28), we find the coordinate 
representation of the unnormalized equilibrium density matrix (2.14) to 
read 

r = exp - ~ 22 = exp 2h 2 

Here, the second equality introduces the equilibrium variance of the 
momentum of the Brownian particle, which follows from (3.16) as 

- 2  ~ 9(v,,) 7 
<p2>= M h l 2 =  l~ 1 ' (3.35) 

= v~ + :9(;~o)_] 

Since the equilibrium state does not depend on ~, the variance of the coor- 
dinate diverges, as was to be expected for a free Brownian particle. 

Let us now study the time-dependent autocorrelation of the position 
of the Brownian particle. Due to the divergence of the equilibrium variance 
(q2) in the limit L ~ 0% the autocorrelation function of the coordinate 
( q ( t ) q )  will also diverge. Instead, we consider the correlation of the 
displacement q ( t ) - q ( O )  with the initial coordinate q(0). The displacement 
correlation function 

Q(t) = s ( t )  + iA(t)  = ( [q( t )  - q(O)] q(O) ) (3.36) 

is regular for all times. Using the stationarity of the equilibrium expectation 
value, we see that its real part 

S(t)  = �89 - q(O)] q(O) + q(O)[q(t)  - q(O)] ) 

is connected with the mean square displacement s(t)  by 

s(t)  = ( [q( t )  - q(O)] 2) = -2S( t )  (3.37) 

and its imaginary part A( t )=  ( l / 2 i ) ( [ q ( t ) ,  q(0)] )  is the antisymmetrized 
correlation. The correlation function (3.36) can now be determined from 
the propagating function (3.24). By virtue of (3.29), we find 

x ( y  - x ] 2 ) ( r f  - y + x, /2)  J(O, y, t, xi ,  2, ~) 2 ~ ( r f -  y, xi,  fi, 2) 

(3.38) 
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Inserting (3.24) with the minimal action (3.21) and (3.28), we obtain for 
the real part of the displacement correlation 

S(t) = 2~ G2 (t)[2C+ (t) - R + + (t) - O] (3.39) 

while the imaginary part reads 

h 
A(t)- 2MG+(t) for t~>0 (3.40) 

We now have to determine the auxiliary functions (3.22), (3.23) occurring 
in the minimal action. We first note that these functions are not all 
independent. Rather, using (3.20), we find 

d C (t)=G+(t)~C+(t) (3.41) 

while the functions R+-+-(t) can be derived from 

according to 

~(t,t')=fodS fo'dU R(s,u) 
G+(t-s) G+(t'-u) 

G+(t) G+(t') 

R+ +(t)= ~'(t, ~) 

R+-( t )=R-+( t )=G+( t )  N ~'(t, t') ,=,' 

. ( t ) = a ~ + ( t ) [ ~ t ~ c ~ ( , ,  c ) ] ,= , ,  

(3.42) 

(3.43) 

(3.44) 

(3.45) 

A method of how these functions may be evaluated is outlined in Appen- 
dix B. It is found that they can all be expressed in terms of the Green's 
function G+(t) and the real part of the displacement correlation function, 
which has the Laplace transform 

z 2 z + ~(z) ~ 2 v. ~ -  z -------~ z + ~(z) z v. + ~(v.) 
n = t  

Collecting the results and using (3.40), we find for the propagating function 
the form 

1 Ei ] 
J(xy, y, t, xi, if, 9) = 47z IA(t)l exp ~ S(xy, y, t, xi, 2, -9) (3.47) 
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with 

S(x i ,  y, t, xi, ~, y) 

( p2 > ~2 ix 2 r ( p: > =i-su + L ~  
MS(t) hS(t) ] 
2A(t) 4A2(t)J 

~i(t) h 2 ~ [ _ ~i~t)] 
+ ( x i 2 + x f y l M - ~ + x i y - } - ~ - x i ~ - ~ M -  J4(t) A(t) J 

+ixif f l  (p2> MS(t)3 . _M2[ -~ . . . J ( t )  
2--x-777J + x A---aS- 1 L 

ixixf { -- 
M 2 F + -~- LS(t) ~7~ - ~(t)] 

+ 2 - ~  [A(0 S(t) - 2~(0  S(t)] 

f ( p 2 )  M z / t ( t ) V . .  it(t) +i4 ~+--~-~-~L~'ltJ--A-~S(t)] } (3.48) 

Hence, the entire dynamics of the system for arbitrary initial states can be 
expressed in terms of the symmetrized part S(t) and the antisymmetrized 
part A(t) of the displacement correlation function (3.36). This correlation is 
an equilibrium property, but together with the (time-independent) 
preparation function it also determines the nonequilibrium dynamics of the 
Brownian particle. The propagating function may be viewed as a quantum 
analog of the classical two-point probability, which is the conditional 
probability multiplied by the equilibrium distribution. Like this classical 
probability, the propagating function can be expressed in terms of 
equilibrium correlations. However, the quantum propagator is a more 
complicated quantity because of the dependence on two additional 
variables ff and 37 associated with initial correlations between particle and 
heat bath. In the following section we discuss the time dependence of the 
displacement correlation for different damping mechanisms of interest. 

4. T IME DEPENDENCE OF THE CORRELATION FUNCTIONS 

In the preceding section we saw that the displacement correlation 
function Q(t) completely determines the time dependence of the 
propagating function J(xs, ri, t, xi, re, ~, ~). However, for an arbitrary dis- 
sipative mechanism the correlation is known only in terms of the Laplace 
transforms of its real part S(t) and its imaginary part A(t), respectively. To 
gain explicit results in the time domain, we have to specify the frequency 

822/49/3-4-25 
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dependence of the damping coefficient. In this section we first consider the 
important case of Ohmic damping, where exact results can be obtained. 
Subsequently, we discuss the asymptotic long-time dependence in the 
general case of a damping mechanism of arbitrary frequency dependence. 

4.1. Ohmic  D a m p i n g  

Let us first consider a heat bath leading to frequency-independent or 
Ohmic damping. Ohmic reservoirs are of great theoretical and experimen- 
tal relevance because they lead to Markovian damping terms in the 
classical equations of motion and they were successfully applied to explain 
recent experiments in the quantum regime. (5) Further, for Ohmic dis- 
sipation we can determine the time dependence of correlation functions 
explicitly. A Markovian or Ohmic damping kernel 

7(t) = 2~6(t) (4.1) 

has a frequency-independent Laplace transform ~(co)= 7 [cf. (3.6)]. In the 
microscopic model, Ohmic damping is realized if the spectral density of the 
environment I(co) takes the form (3) 

I(co) = m ~ o  (4.2) 

As is familiar from the theory of classical Markov processes, Ohmic 
damping leads to sum rule divergences. Such a divergence arises here if we 
consider the equilibrium variance of the momentum. From (3.35) we have 

M o~ 7 (4.3)  P2>=T.=Zoo +lvol 
which is logarithmically divergent. Clearly, this divergence is an artefact of 
the unphysical high-frequency behavior of the spectral density (4.2). If we 
consider a realistic damping kernel with finite memory, the divergence is 
readily removed. For instance, a Drude model with 7(0 = 7cod exp(-oJDt)  
leads to a finite value of (p2) given by 

(p2) = 7 . =  ~ (~o~+ fu.I)v~+~coo Ivnl 
(4.4) 

In the limit ~o D >> 7 the Drude model behaves like an Ohmic model except 
for very short times of order 1/~o D. For high temperatures the variance 
(4.4) gives (p2)=MkBT as the equipartition law predicts. For T - - 0  the 
damping leads to a nonvanishing finite value of (p2) .  Without dissipation 
the momentum of a free particle can be sharp variable. 
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Let us now consider the correlations. Using (3.40) and inserting 
~(z) = 7 in (3.19), we have for the antisymmetrized correlation function 

h h 
A ( t ) -  G + ( t ) = - - - [ 1 - e x p ( - 7 t ) ]  for t>~0 (4.5) 

2M 22147 

The Green's function G+ (t) determines the response of a Brownian particle 
initially in equilibrium to an external force F(t) according to 

fo ( q ) , = M  i d s G + ( t - s ) F ( s )  (4.6) 

For a time-independent force this yields the average momentum 

( p ) ,  = G + ( t )F= 1 [1 - e x p ( - T t ) ] F  (4.7) 
7 

so that the particle is accelerated at first but after a time of order ~ I a 
finite asymptotic velocity is reached, which increases with decreasing fric- 
tion. Ohmic damping thus provides a good description for the familiar 
motion in viscous media, where the behavior (4.7) is usually realized. 

Using (3.46), one can also readily establish the time dependence of the 
symmetrized displacement correlation S(t). We find 

1 1 2 ~ 1 
S( t )=  

M fl~ t q M fl 7 2 M fl L 2 n = l  Vn~-Vn~ 

- 2M7 cot exp( -7 t )  + (4.8) 
vn(  2 - v2.) 

In the classical limit h--* 0 this yields the familiar result 

1 1 
Sol(t) = - Mfl----~ t + - M - ~  [1 - exp( -Tt ) ]  (4.9) 

For long times and finite temperatures, the displacement correlation is 
proportional to t, since all the remaining terms in (4.8) are either constant 
or vanish for t ~ oe. Hence, we can define the diffusion coefficient 

1 lim Is(t) = - l i m  -1 t S(t) (4.10) D =~,__,~ t 

which depends on the temperature and the strength of the damping 
according to the Einstein relation 

D = 1/Mfl7 = kB T/My (4.11 ) 
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For finite temperatures the Brownian particle undergoes a diffusion process 
in the presence of an Ohmic reservoir. At T =  0, however, the diffusion 
coefficient vanishes, and the displacement correlation is no longer oct in 
the long-time limit. Since the Matsubara frequencies v, become continuous 
at T=  0, the sums in (4.8) have to be replaced by integrals. For the time 
derivative of S(t)  we obtain 

h7 f o  exp( -v t )  
5:o(t) = ~--~ dv v2_7 2 (4.12) 

which can be expressed in terms of the exponential integral 

f 
x 

Ei(x) = dy exp(y___._~) (4.13) 
- c o  y 

For real x > 0 this definition is analytically continued by 

_ _  1 
Ei(x) = lim [Ei(x + ie) + E i ( x -  ie)] (4.14) 

~ ~0-2 

Using S(0)=0,  we have from (4.12) 

So(t) = - f ~  ds [ E i ( - T s )  exp(Ts)-~(Ts)  exp(-~s) ]  (4.15) 

For long times, this integral grows logarithmically according to 

h 
So(t) ~- - - -  ln(7t) for t--* oo (4.16) 

rcM7 

Hence, at zero temperature, the growth of the displacement correlation 
[and because of (3.37) also of the mean square displacement] is no longer 
diffusive oct, but only ocln(t). The reason for this slower rate of growth is 
the lack of thermal fluctuations in the reservoir that could kick the particle. 

4.2. F requency-Dependent  Damping 

For a frequency-dependent damping mechanism we can in general no 
longer obtain exact results for the correlation functions the way we did in 
the Ohmic case. We can, however, examine the asymptotic behavior for 
arbitrary frequency dependence of the damping. The long-time dependence 
of a function is determined by its Laplace transform for arguments with a 
small positive real part. Hence, the results will depend mainly on the low- 
frequency properties of the damping. Let us consider a class of reservoirs 
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where the spectral density 1(09) at low frequencies is oc09 ~, where e is a real, 
positive number. Negative values of ~ cannot occur because the definition 
(3.1) of the spectral density implies I ( 0 ) =  0. In order to describe a realistic 
heat bath, we have to cut off the spectral density at high frequencies, 
Choosing a sharp cutoff at 09c, we can describe the reservoir by 

I(09)=Mg~,09~O(e)c-09); ~ > 0  (4.t7) 

We note that most of the following results do not depend on this special 
choice of a cutoff, but are also met if we consider a soft cutoff where/(co) 
vanishes continuously as 09 ~ oo. In fact, the high-frequency properties of 
the heat bath affect the long-time behavior of the correlations only if the 
exponent e ~> 2, where the damping leads to a renormalization of the mass 
of the Brownian particle (see below). For  times t >> 60c -1 a real reservoir can 
therefore be described by a spectral density of the form (4.17) coinciding 
with the true spectral density at low frequencies plus a modified bare mass 
of the particle, which compensates for the high-frequency deviations from 
(4.17). Reservoirs of the form (4.17) were discussed in various contexts. For 
instance, the coupling of a charged defect to electrons can be modeled by 
Ohmic dissipation, i.e., e = 1. In the case of a phonon bath in d dimensions 
one gets c~ - d or ~ = d +  2, depending on the symmetry of the coupling. 3 

Inserting the spectral density in (3.6), the frequency-dependent 
damping coefficient is found to read 

2g~09 ~ ( c~ ~ 09~'] 
~(09) = - -  ~-~- F a r e  \ 1' 2; 1 + 2; co2J (4.18) 

where F(a, b; c; z) is the hypergeometric function. For small frequencies we 
can use the asymptotic expansion of the hypergeometric function, 
yielding t15) 

i ( 0 9 )  = 

[gJsin(�89 ] 09~-111 + O(09/09c ' (09/09,.)2 ~)] for 0 < e < 2 

(g2/n)09 ln(1 + 092/092) for e = 2 

[2g~09~-2/n(c~ - 2)] o9(1 - {n(7 - 2)/2 sin[�89 - 2)] } 

x (09/09c)~- 2 + 0((o2/o)2)) for 

[2g~09~-z/rc(~- 2)] 0911 + O(092/COc2)] for 

2 < c ~ < 4  

~ > 4  

(4.19) 

where we included the next to leading order term in the case 2 < e < 4 for 
later purposes. For  09 = 0 the damping coefficient is only analytical for odd 

3 Relevant articles can be traced through Ref. 20. 
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integer values of c~. Otherwise, derivatives of order n of ~(c0) diverge when 
n ~ > e - 1 .  

4.2.1. The Antisymmetrized Displacement Correlation Function 

The antisymmetrized displacement correlation follows from (3.19) and 
(3.40) as 

ih ioo +~ exp(zt) 
A( t l=T-~  f ,~+ dz 

_ z 2 + z ~ ( z )  
(4.20) 

Let us first consider the case c~ < 2. Inserting (4.19), we obtain 

ih sin(zt ~/2) 1 fr +~ 
- -  t ~  | dx A(t)~-4rcM g~ --i~+~ 

exp(x) 
Xx~[l+O(x/coct ,(x/coct)2_~) ] for t--.oe, ~ < 2  (4.21) 

For long times we can expand the integrand in a power series in x/~oct. The 
leading term yields a representation of Euler's gamma function, so that 

A(t) -"~ 
h sin(z ~z/2) 

2Mg~F(~) 
t~-111 + o((~oct) -1, (coot) ~ 2)3 

for t ~ o %  c~<2 (4.22) 

This long-time expansion includes the corresponding limit of the exact 
Ohmic result (4.5), since the corrections vanish for coc ~ oo. 

For e = 2 an analogous analysis of (4.20) yields 

~h t 
A ( t ) _  - - { l + O [ l n - ~ ( t ) ] }  for t ~ o e ,  e = 2  (4.23) 

4gzM ln(t) 

where we omitted the constant, which renders the argument of the 
logarithm dimensionless. The value of this constant depends on the correc- 
tions to the leading order time dependence. 

In the case e > 2 we obtain 

---t2Mr 1 + ~  g~/sin rc F ( 4 - ~ )  t 2 ~ 

+ O(co22t 2, o92~t-~)} for t-*o% c~>2 (4.24) 
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where we introduced the renormalized mass 

Mr=M[l+2g=co ~ 2/~(c~-2)] for ~ > 2  (4.25) 

For later use we have included in (4.24) the leading correction for 
2 < ~ < 4 .  

We can now discuss the effect of a constant driving force on the Brow- 
nian particle in the different regimes. The response of the momentum to an 
applied force is ( P ) t - -  G+(t)F= -(2M/h) A(t)F. For c~ < 1 (sub-Ohmic 
damping) the force drags the particle away, but the velocity becomes 
arbitrarily small for large times, where the strong damping at low frequen- 
cies is important. In the Ohmic case (c~ = 1) we obtain a constant velocity, 
as has been argued before. For  c~ > 1 (super-Ohmic damping) the velocity 
of the particle grows as time increases. As the exponent c~ exceeds 2, the 
damping effectively vanishes for long times, and we obtain a constant 
acceleration F/Mr of the particle. Hence, the Brownian particle behaves as 
a free particle for c~ > 2, albeit with a renormalized mass Mr. ~15) This mass 
renormalization is the only effect of the environmental coupling that sur- 
vives for long times. This is easily understood if we consider the definition 
(4.25) of Mr in terms of the microscopic model. Using (4.17) and (3.1), we 
have 

Mr= M + 2 fo ~ &o I((o) U n C0 ~ - M +  ~ m, (4.26) 
n = l  

so that the renormalized mass is just the sum of the masses of the Brow- 
nian particle and all environmental oscillators. For  ~ > 2 these oscillators 
are dragged along by the Brownian particle in the long-time limit. For  

~< 2 the sum of the masses of the environmental oscillators is infinite. 
Then Mr does not appear in the theory and the Brownian particle is 
damped when it moves relative to the motionless center of mass of the 
environment. 

4.2.2. The Symmetrized Displacement Correlation Function at 
Finite Temperatures 

Let us now consider the long-time behavior of the real part S(t) of the 
displacement correlation. While the imaginary part A(t) and the Green's 
function G+(t) discussed before are temperature-independent quantities, 
the asymptotic time dependence of S(t) at finite temperatures differs 
strongly from the zero-temperature case. At finite temperatures, all terms in 
the sum in (3.46) giving the Laplace transform of S(t) lead to exponentially 
decaying or constant terms in the time domain. Thus, the leading long-time 
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dependence stems from the first term in (3.46). This term, however, is 
connected with the antisymmetrized correlation by 

2 fit(z) for z ~ 0 ,  T > 0  (4.27) 
z 

Accordingly, we have, for long times, 

S(t) ~ - dsA(s) for t ~ o e ,  T > 0  (4.28) 

so that in the long-time limit the symmetrized displacement correlation is 
but a time integral of the antisymmetrized correlation. Using (4.22)-(4.24), 
we have 

-[sinOzc~/2)/Mflg~F(~+ 1)] t~[-1 +O(t -~, t~-2)] for c~<2 

S(t) ~- - (n/4Mflg2) (tZ/ln(t)){ 1 + O[ln-~(t)]  } for c~ = 2 

-(tZ/2mrfl)[1 + O(t -2, t 2 ~)] for ~ > 2  

t ~ o %  T > 0  (4.29) 

Because of (3.37), these asymptotic laws also determine the long-time 
dependence of the mean square displacement in equilibrium. For e < 2 the 
mean square displacement grows oct ~, which includes diffusive behavior 
oct in the Ohmic case. Sub-Ohmic damping (~ < 1) results in subdiffusive 
growth of the mean square displacement, while super-Ohmic damping 
(e > 1) yields a faster, superdiffusive time dependence. In the borderline 
case e = 2 we get no simple power law behavior, while for e > 2 we again 
observe the asymptotic vanishing of the friction. The particle behaves 
as if it had started with a certain velocity, which is then conserved. The 
damping is effective only on an intermediate time scale needed to establish 
this velocity (cf. next section). 

4.2.3. The Symmetrized Displacement Correlation at Zero Temperature 

Let us now consider the correlation S(t) for T =  0. Then the frequen- 
cies vn are continuous and the sum in (3.46) has t o  be replaced by an 
integral. We have 

2 1 f ~  

& ( z )  = 7 Jo 

where 

1 = - - ; o  d v ~ f ( v )  (4.30) d v ~  [ f ( v ) - f ( z ) ]  2 1 
7"CZ 

f ( z )  = zZA(z) (4.31) 
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Inserting in (4.30) fo r / (v )  the definition of the Laplace transform, one may 
transform the expression to read 

fo ~ fo ~ 1 l f ( t )  (4.32) Z2~o(Z ) 2 dt exp ( - z t )  dx x 2 _  1 x 

Now, because of So(0)=So(0)=0,  the lhs of this relation is just the 
Laplace transform of So(t). Since the rhs also has the structure of a Laplace 
transform, we can write 

!f !i 1 o~ 1 I f  t dXx2 A (4.33) So(t) = -  dx x2 . . . .  
o - 1 x 2x 7 o 1 x 

where the second equality holds, since A(0)= 0. Integrating this equation 
twice, we obtain 

fo So(t )=_2 dx x rc ~ A (4.34) 

since all boundary terms do not contribute to the integral. 
We can now insert the asymptotic laws (4.22)-(4.24) for the antisym- 

metrized correlation A(t) and obtain the long-time dependence of So(t). 
For 0 <c~ < 1, A(t) vanishes asymptotically. Substituting u =  t/x, we can 
perform the limit t --* oe in the integrand, yielding 

! s  ;o lim So(t ) = -  du-1 A(u) =-2 dz d(z)  for cr < 1 (4.35) 
t ~ o o  0 1X "172 

Using (4.19) and (4.20), we find 

lim So(t) = - ]h/M(2 - ~) sin 
t ~ c ~  t_ 

x [ 1 + O(t 1)3 for c~<l (4.36) 

Hence, for a sub-Ohmic reservoir at zero temperature the symmetrized 
displacement correlation remains finite in the limit t--, oe. We will see in 
the next section that this has profound consequences for the time evolution 
of nonequilibrium initial states. 

For e = 1 the antisymmetrized correlation approaches a constant in 
the long-time limit, leading to a logarithmic divergence of the integral 
(4.34). Splitting the integral into an integral form 0 to t and a correction, 
we obtain 

h 
S o ( t ) ~ - - - - l n ( t ) { l + O [ l n  1(0} for t - , m ,  c~=l (4.37) 

~Mgl 

which is the long-time expansion of the exact Ohmic correlation (4.15). 
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In the interval 1 < ~ < 2  the result (4.22) for A(t) leads to the zero- 
temperature displacement correlation 

2--~ 

x [ l + O ( t ~ - 2 ) ]  for t ~ o o ,  l < a < 2  

tC~ - 1 

(4.38) 

The case ~ = 2 is again not described by a simple power law behavior. 
Inserting (4.23) in (4.34), we get 

So(t)- h t fo o 1 1 
2Mg2 In(t) dy y2 _ 1 1 - l n ( y ) / l n ( t )  

hTz 2 t 
8Mg zln2(t) I-1 + O(ln l( t)]  for t ~ o% = 2 (4.39) 

where we have expanded the second term in the integrand to obtain the 
second equality. 

For  a > 2  the leading term oct in the long-time expansion (4.24) of 
A(t) gives no contribution to (4.34). Hence, the corrections to the linear 
growth of A(t) that are explicitly given in (4.24) are important. We find 

2F(4--  a) M~ cos rc t 3 ~ 

x [ l + O ( t  2 ~)] for t ~ o %  2 < e < 3  (4.40) 

where Mr is the renormalized mass (4.25). The case ~ = 3, corresponding to 
the coupling to a three-dimensional phonon bath, is similar to the Ohmic 
case (c~= 1). The displacement correlation again grows logarithmically 
according to 

hg 3 M 
So(t)~-- ~ln(t){l+O[ln-l(t)]} for t ~ ,  ~ = 3  (4.4t) 

M r 

Similarly, the situation for ~ > 3 resembles sub-Ohmic damping. Since the 
leading term oct in A(t) gives no contribution, we obtain from (4.34) 

lim So(t) =-2 fo~dUI! A(u)-A(t ~ ) l  
t ~ <Y3 

2 dz .d(z) + for 
7"C 

> 3 (4.42) 
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so that So(t) approaches a constant in the long-time limit. This last 
expression, however, cannot be evaluated using the low-frequency expan- 
sion of the damping coefficient. Apart from the mass renormalization, the 
value of SoU ~ oe) for a > 3 is the only result where the high-frequency 
properties of the damping enter the long-time behavior of the correlations. 

For  later use it is worthwhile to recollect the asymptotic results for all 
correlation functions. To simplify the notation, we introduce the length 

qoo= h/M(2-a) sin sin rc g~ for ~ < 1  

(4.43) 

and the constants 

d~ = 

h/rcMgl for e = 1 

[h /2Mg~F(~)]s in2(~-~- ) / cos (~z~  -) for 1<c~<2  

~2h/8Mg2 for ~ = 2  

hMg~/[2M2F(4-~)cos(rc-~22)l for 2 < ~ < 3  

hMg3/rcM 2 for ~ = 3 

(4.44) 

Further, for ~ ~< 2 

=~Mg~F(c~+l)/sin(Tce/2) for ~ < 2  (4.45) 
#~ (4Mg2/n for ~ = 2 

is a generalized mobility, which is connected to the generalized diffusion 
coefficient D~ by 

D~=I/flI~=kBT/I~ for c~<2 (4.46) 

Finally, for :e > 2 

v~ = (M, fl)-l/2 = (k B T/Mr)m (4.47) 

is the mean thermal velocity of a particle with mass Mr- In terms of 
these definitions, the asymptotic time laws are summarized in Table I. 
Comparing the behavior of the mean square displacement s(t) at finite 
temperatures with the T--  0 result, we see a remarkable difference. Whereas 
the rate of growth at finite temperatures gets faster with increasing e and 
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then saturates for ~ > 2 ,  there is a maximum for ~ = 2  in the zero- 
temperature case. A faster growth of s(t) for larger 7 seems natural because 
with growing ~ there are fewer environmental oscillators at low frequencies 
and the damping is less effective for long times. The contrary result at T = 0 
for ~ > 2 is connected with the fact that the limit ~ ~ 0o corresponds to a 
free particle. The latter, however, has vanishing momentum at T--0 .  
Hence, the zero-temperature mean square displacement So(t) vanishes, too. 

5. RELAXATION OF NONEQUILIBRIUM INITIAL STATES 

Let us now discuss the time evolution of a free Brownian particle 
starting from a nonequilibrium state generated by a preparation 
mechanism of the form described in Section 2. In Section 3 we saw that the 
dynamics of such a state can be expressed entirely in terms of the 
displacement correlation function Q(t). Since in the preceding section we 
obtained analytic results for the long-time behavior of this correlation for 
practically all linear dissipative mechanisms of interest, we are now in the 
position to study how (or whether) a nonequilibrium initial state 
approaches equilibrium. 

5.1. Broadening of an Initially Localized Wave Packet 

5. 1.1. Time Evolution of  a Gaussian Density Matrix 

Let us first consider a Brownian particle that is initially localized. Such 
a state may be prepared, e.g., using a device that lets particles pass at 
position q with probability w(q, 0). This position measurement is described 
by the projection operator 

Pq = f dq W1/2(q, O) Jq~(ql (5.1) 

If we especially want to prepare a Gaussian wave packet, the measuring 
device can be visualized as a Gaussian slit against which an ensemble of 
particles propagates. We are then interested only in the dynamics in the 
plane of the slit and not in the direction of this propagation. Choosing a 
state localized around the origin with width cr~/2, the initial probability 
distribution w(q, 0) is given by 

w(q, 0 ) =  (2rca0) 1/2 exp(_qZ/2ao) (5.2) 
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The normalized initial density matrix is simply W o = Pq ffz~p~, so that the 
preparation function follows from (2.12) and (3.27) as 

F2 X 2 ) 
2(r 'x')5'x)=(2~0.~ mexp 200 ff-~o 6(x-#)6(f~) (5.3) 

Note that the position measurement also influences the nondiagonal 
coordinate of the density matrix and therefore affects the momentum 
distribution. As the uncertainty relation requires, a localization in position 
space yields a broader distribution in the conjugate variable. At time t - -0  
the reduced density matrix is given by 

r2 / < p2 > 
P~176 20.0 k ~ + ~ - o ~ 0 )  x2] (5.4) 

Inserting the preparation function (5.3) and the propagating function 
(3.47), (3.48), in (3.25), we obtain the density matrix at time t as 

P(x'r't)=[27~0.(t)]-i/2exp ( ( p 2 ) ) 2 h  2 X 2 

X exp ( 1 20.(t) { r2 i + 2 -~ Mxr IS(t) 
0.0 A 

(5.5) 

Since the particle had no average velocity in the initial state, the wave 
packet remains centered at the origin. The width 0.1/2(0 can be expressed 
through the correlations S(t) and A(t) via 

0.(t) = cr o -- 2S(t) + A2(t)/Cro (5.6) 

Since the symmetrized displacement correlation S(t)=-s(t)/2 is always 
negative, the wave packet can only become broader with increasing time. 

5. 1.2. Asymptotic Spreading of the State 

Let us now discuss how the long-time behavior of the variance (5.6) 
depends on the dissipative mechanism. To that aim we can use the 
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asymptotic laws for the correlation functions, which are summarized in 
Table I. At finite temperatures we obtain (tS) 

t 2D~t ~ for c~<2 
cr(t)~_ 2D2t2/ln(t) for ~ = 2  

(vZ~+h2/4aomZ)t 2 for ~ > 2  

t ~ o %  T > 0  (5.7) 

Hence, the state spreads diffusively in the Ohmic case (~ = 1), while for 
sub-/super-Ohmic damping we have a sub-/superdiffusive rate of growth of 
the variance, respectively. For  all ~ ~< 2 the asymptotic behavior of a(t) is 
completely determined by the symmetric part S(t) of the displacement 
correlation. The antisymmetrized part contributes only for ~ > 2, where we 
have a kinematic spreading with a velocity voo given by 

2 voo = v~ + h2/4aoM2r (5.8) 

In the classical limit only the first term in this expression survices. It stems 
from the symmetrized correlation and gives simply the thermal velocity of a 
particle with the renormalized m a s s  M r. The second term in (5.8) is a 
quantum correction originating in the antisymmetric correlation. It 
becomes increasingly important at lower temperatures. This contribution 
to the asymptotic velocity may be viewed upon as a consequence of the 
uncertainty relation, since it gives the minimal velocity fluctuations of a 
particle of mass Mr initially localized with variance ao. 

At zero temperature the slower rate of increase of S(t) results in a 
slower spreading of the state for ~ ~< 2, while for ~ > 2 the asymptotic 
behavior is qualitatively unchanged. Using Table I, we have ~15) 

! 2 q ~ + a o  for c~<1 

2dl In(t) for c~ = 1 

ao(t)~- (~2h2/4#2~o)t2~-2 for 1 < ~ < 2  

(2h2/#~ao)t2/ln2(t) for ~ = 2  

(hZ/4aoMZ)t 2 for e > 2  

t ~ o o ,  T = 0  (5.9) 

Here it is the antisymmetric correlation A(t) that dominates the asymptotic 
behavior for all ~ > 1. For  ~ > 2, Eq. (5.8) for the asymptotic velocity is still 
correct, since the thermal contribution v~ vanishes as T ~  0. Between ~ = 1 
and ~ = 2 we cover the sub- and superdiffusive regimes, including diffusive 
behavior for ~ = 3/2. For  Ohmic damping we now have a logarithmic 
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growth. Most remarkable, however, is the behavior for sub-Ohmic dis- 
sipation (e < 1 ). The initially localized state remains localized for all times, 
although there is no external potential hindering the particle from drifting 
away. The localization length (15) 

= a~/2(t -~ oo ) = (2q~ + ao) 1/2 (5.20) 

consists of a dynamical part springing from the asymptotic value 2q~ of 
the mean square displacement So(t) plus the initial width of the state. For 
~ 0  the localization length approaches the initial width, whereas it 
diverges as the Ohmic case is approached. This corresponds to the 
crossover from the localized region to the logarithmic spreading of the 
state. 

A localization of a particle by the dissipative influence of a heat bath 
was also found for Ohmic damping in the presence of a periodic 
potential. {7) In this case, however, the Ohmic coupling constant has to 
exceed a critical value in order to obtain a confined state, while in our 
problem all nonvanishing values of the coupling lead to the localization of 
the particle as long as the exponent of the spectral density is less than 1. 
We add that for very low temperatures, where the state does spread 
asymptotically according to (5.7), the particle is still localized for times of 
order h/kB T, which may become very long due to the continuous vanishing 
of the leading time dependence in (5.7) as T ~  0. 

5.2. Long-Time Behavior  for  Arb i t ra ry  Initial States 

Let us now consider the general behavior of the propagating function 
(3.47), (3.48) for the different types of damping. Using the asymptotic 
correlations summarized in Table I, we can determine how initial states 
described by an arbitrary preparation function of the form discussed in Sec- 
tion 2 behave for long times. Because of the different asymptotic behavior 
of the displacement correlation in various regions of the parameter space, 
this analysis is divided into several subsections. 

5.2. 1. Finite Temperatures and a <~ 2 

In the limit of long times we can drop all contributions in the 
exponent of the propagating function that vanish as t --* oo except for those 
terms of order y/sUZ(t), where s(t) is the mean square displacement. These 
latter terms have to be retained, since they describe the spreading of the 
state. 
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For c~ < 2 we thus find 

J(x f  , y, t, xi, 2, y)  

~- ~ (xy )  ~n(ff)(l~J2rceht ~ ') 

{ ( #~ t2-~ ( p 2 )  exp - x ~  ~ + 2h ~ 

~ ( i # ~ ) t ~ - ~ ( y + p )  
- x ,  L\<~/i ) 

M (M 
+ 7 ~  (2- ~)x, "+ ;~ 

801 

] 2  for t - * m ,  T > 0 ,  c~<2 

(5 .11)  

Completing the square in the exponent and omitting terms negligible for 
t -* oo, we obtain 

J (x f  , y, t, xi,  x, y)  

~- p~(xy) ~ ( ~ )  2 z c ~ h t  ~ -  1 

tx~ t2_ ~ Xi + Y x e x p  /~o~2h 2 

xexp - ~ D - ~ t  for t -*oo,  T > 0 ,  c~<2 

1 
= fin(Xr)~(2)6(xi)(4rcD~t~) -1/2 exp ( -  ~ t -~y 2) (5.12) 

To obtain the second equality, we noted that the first exponential 
approaches a a-function as t ~ oo. The reduced density matrix evolving 
from an initial state characterized by the preparation function 
) ~ ( r f  - -  y, xi, 35, Yc) is then given by 

1 -~  2'~ p(xf  , rf , t)~- (4nD=t=)-l/2 exp - ~ t ry) fi/~(xf) 

x f dr~ d~ dp 2(re, 0, 35, 2) pe(~) 

for t -* 0% T > 0 ,  c~<2 (5.13a) 

Here, we put y=rr--r~ in (5.12) and noted that terms in the exponent 
proportional to r i give no contribution in the limit t --, oo, since for a state 

822/49/3-4-26 
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initially localized around 0 it is the final coordinate rf  that is responsible 
for the growth of y. Because of (2.15) the last integral is simply the trace 
over the initial state, which we assume to be normalized. Hence, we have 

1 t ->})  p ( x f  , r f  , t) ~- (4nD=t ~) mexp  - 

( ( P 2 )  x}) for t - + m ,  x exp 2h 2 T > 0 ,  ~ < 2  

(5.13b) 

T > 0 ,  ct=2 

(5.14) 

where the first two terms describe the spreading of the state in position 
state, while the last term shows that the momentum distribution of 
arbitrary initial states approaches the correct equilibrium distribution. 

For ~ = 2 the same analysis yields 

( ln ,, ) 
p ( x f ,  r f ,  t) ~-- \41rD2t2 j exp 4D2t2 r} 

( ( P 2 ) x } )  for t - + m ,  x exp 2h 2 

where the spreading in position space occurs according to the faster law 
t2/ln(t).  In summary, for ~ ~< 2 the state of the Brownian particle always 
approaches the equilibrium state as t -+ o0. 

5.2.2. Finite Temperatures and a > 2 

We again proceed as above and determine the long-time behavior of 
the propagating function retaining terms of order y/sl /Z(t) .  Using Table I, 
we find 

J(x s, y, t, x,, ~, y) 

M r  exp - exp - - i  x i -  
~ -  2~ht  2h 2 f J - ~  y Xf 

{ 1 222} X exp -- ~-2 r ( p2 )(~ _ Xi)2 ..~ 2 M M r v 2 X , ( f f  __ x , )  + M r vl~x i ] 

for t-+oo, T > 0 ,  ~ > 2  (5.15) 

where we introduced 

r = ( p 2 ) _ M 2 v 2  (5.16) 
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Now, there appears no 6-function in xi for t ~ oo. Hence, we do not obtain 
the structure of a trace over the initial state, and we expect some effects of 
the preparation to survive in the long-time limit. As above, for a state 
initially localized near the origin, the growth of the variable y = r f -  r~ in 
the asymptotic propagating function is due to the growth of rf, since r~ 
becomes negligible against r I for long times. Further, the asymptotic 
propagating function no longer depends on )7 and its dependence on :~ is 
not coupled to the final coordinates. We therefore define the reduced 
preparation function 

).~176 = f dr i d2 dy 2(r;, x~, #, 2) 

{1 
• - ~-5 [ (P2) (x - x i )2  

) 
+ 2MMrv~Xi(2 - -  x i ) +  M2v}x2i]~ 

(5.17) 
which determines the evolution of the density matrix of an initially 
localized state for long times according to 

Mr (_ r 4) P(X#, rf , t) ~- ~nht exp \ ~-~ 

M 

(" ) \ ht ] e x p  -~r fXy  

x e x p ( - ~ _ 2  x2) for t-* T > 0 ,  ~ 2h f ]  0% > 2  (5.18) 

Here, the second equality introduces the Fourier transform 

1~(ki) = ~ dxi 2~(x,) e x p ( -  ikix~) (5.19) 
- - o O  

of the reduced preparation function. The asymptotic form of the density 
matrix still depends on the inital state for e > 2. This is due to the fact that 
for c~ > 2 the center-of-mass velocity of the entire system is a conserved 
quantity, the statistics of which is time-independent. 

Let us examine the distributions in coordinate and momentum space 
in more detail. The Wigner function corresponding to (5.18) is given by 

W(p, q, t) "~ (Mjht)(2nq})-l/2 ~OO(Mrq/ht) 

xexp[ - - (1 /20) (p -Mq/ t )  2] for t - * m ,  T > 0 ,  e > 2  

(5.20) 
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Accordingly, the probability distribution in position space 

( ,  

w(q, t) = J dp W(p, q, t) = p(O, q, t) 

~ - (Mjh t )~ (Mrq /h t )  for t--,oe, T > 0 ,  ~ > 2  (5.21) 

depends only on the scaled variable v = q/t. Defining the probability dis- 
tribution 

g2(v) = lira tw(vt, t) = (Mjh)  ~ ( M , v / h )  
t ~ c ~  

of this variable, we have 

(5.22) 

w(q,t)=(1/t)g2(q/t) for t ~ ,  T > 0 ,  c~>2 (5.23) 

Hence, the probability distribution in coordinate space behaves 
asymptotically as if the state had initially been localized at the origin with a 
velocity distribution g2(v). Then the spreading of the state is kinematical 
according to q = vt. The dissipation is effective only during intermediate 
times, where momentum is transferred from the particle to the reservoir. 
Afterward, the particle behaves as if it were free. This behavior is related to 
the vanishing of the integral ~ dt ?(t), so that for long times the classical 
equation of motion allows for a solution with constant velocity. The 
asymptotic velocity distribution O(v) is the distribution of the center-of- 
mass velocity, which depends on both the coupling to the heat bath and on 
those properties of the initial state entering its reduced preparation 
function. 

The velocity distribution g?(v) completely determines the spreading of 
the state in position space. However, it differs from the asymptotic momen- 
tum distribution of the Brownian particle, which is given by 

wo~(p) = lim f dq W(p, q, t) 
t ~ o ~  

for T >  O, ~ > 2  

(5.24) 

Hence, apart from the momentum corresponding to the value given by 
O(v), there are dynamial fluctuations of magnitude ~b in the momentum 
distribution. These fluctuations result from the environmental coupling and 
they cannot be observed in the broad coordinate distribution. For 
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vanishing coupling we have M r = M  and (p2}  =MkBT, so that the 
momentum distribution indeed reduces to 

woo(p)=(1/M)f2(p/M) for ~(co)=0, T > 0 ,  c~>2 (5.25) 

On the other hand, the additional momentum fluctuations survive in the 
classical limit, where ~b = (1 - M/Mr) MkB T. 

5.2.3. Zero Temperature 

As we have already seen in the example of an initially localized wave 
packet, the long-time behavior at zero temperature differs from the finite-T 
results. Let us start our discussion of the zero-temperature asymptotics 
with the region 0 < c~ < 1. Using Table I, we obtain for the propagating 
function 

J(x I ,  y, t, x,, ~, p) 

xexp x i+i  21~qo~tl_ ~ (y+ fi) 

1 y)2] 
x exp [ -  4--~ (y + 

~-fie(xf) fie(~) 6(xi)(4=q~) ,/2 exp [ _  1 ( 4 q ~  Y+'V)2] 

for t ~ o o ,  T=O, ~ < 1  (5.26) 

Hence, for ~ < 1 every localized initial state keeps a finite width for all 
times. This extends our finding for the Gaussian initial state considered in 
Section 5.1 to the general case. Since the asymptotic propagating function 
depends only on r f - ?  [cf. (3.26)], we may again define a reduced 
preparation function by 

2F(~) = f dr e dff 2(ri, 0, r i - -  r, ~')/3e(~- ) (5.27) 

Then the asymptotic Wigner function can be written as 

lira W(p, q, t) ~ we(p) w~(q) for T = 0 ,  c~< 1 (5.28) 
t ~  ~O 

with the equilibrium momentum distribution 

we(p) = (2rt ( p25) -1/2 exp( -p2/2 ( p25) (5.29) 
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and the coordinate distribution 

[ '  ] w~(q)=(4~qo~)-l/2fdfex p - 4 - - ~ ( q - ? ) 2  2F(f  ) for T=0,  e < l  

(5.3o) 

which gives the localization length as a sum of the asymptotic contribution 
2qoo plus an effective width of the initial state, which is inherent in the 
reduced preparation function 2F(f  ). Since the effects of the reduced 
preparation function die out at finite temperatures, our model with c~ < 1 
provides a simple example for a dissipative phase transition at T=  0. 

Next, we consider Ohmic damping. Then the asymptotic density 
matrix is readily found to read 

p(xf, rf, t) "~ [4rcdl In(t)] -1/2 exp [ 
i 

4di ln(t)J 

( ( P 2 ) x } )  for t ~ o o ,  T=0,  ~ = 1  (5.31) • exp 2h 2 

where the prefactor together with the first exponential describes the 
logarithmic spreading in position space, while the momentum distribution 
reaches equilibrium as described by the last term. Hence, the effects of the 
initial preparation die out completely and the system is ergodic inasmuch 
as every initial state reaches the equilibrium state in the limit t ~ ~ .  

Finally, we consider the super-Ohmic case, ct > 1. Now we obtain no 
f-function in xi in the asymptotic propagating function for t ~ ~). Since the 
thermal velocity v~ vanishes, the finite-temperature definition (5.17) of the 
reduced preparation function simplifies at T=  0 to read 

2~(x,) = f dri d)2 d)7 2(r~, xi, )7, )~)/5~(~ xi) (5.32) I 

The density matrix for long times then takes the form 

( - i r f  xi iMc~rfxg~ 
p(x s, r s, t) ~- [4nlA(t)l]-l~n(Xr) f dxi2y(xi) exp \2  [A(t)] + ht ) 

=[21A(t)l]  lexp -~c~r ixz  Pn(Xs)Zo 

for t ~ o %  T=0,  c~>l (5.33) 

where c a = e - 1  for l < e < 2  and c a = l  for e ) 2 .  The probability dis- 
tribution of the coordinate is given by 

w(q, t )=[2lA( t ) l ] - l~(q /2 lA( t ) l )  for t ~ ,  T=0 ,  ~>1  (5.34) 
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and the asymptotic momentum distribution follows from (5.33) as 

w~(p) = lim (27c(p2)) -1/2 f dk~(k)  
t ~ o o  

xexp{ 2} 
for t ~ o %  T=O, a > l  (5.35) 

For 1 < ~ ~ 2 the antisymmetric correlation A(t) grows more slowly than 
oct. Hence, the initial state is not coupled to the final variables and the 
momentum distribution approaches its equilibrium form (5.29). Again we 
find that the system is ergodic. For a > 2 the correlation A(t) grows oct and 
the situation is basically the same as in the finite-temperature case. Again 
the spreading in position space resembles an ensemble of free particles that 
started near the origin with a velocity distribution given by (5.22). The 
momentum distribution (5.35) may be transformed to read 

woo(p)=(2zr(p2)) 1/2 f dvf2(v)exp[ 2(p2 ) 1  (p_Mv) 2] 

for t ~ o e ,  T=0 ,  ~ > 2  (5.36) 

which is the zero-temperature limit of (5.24). Again the system is not 
ergodic, since the final momentum distribution depends on the preparation 
via the center-of-mass velocity distribution f2(v). Finally, we mention that 
these results for T=  0 are not purely academic, since the zero-temperature 
behavior is also found for low finite temperatures for intermediate times 
oo~ -1 ~ t ~ h/kB T. 

A P P E N D I X A .  EVALUATION OF THE FOURIER COEFFICIENTS 
FOR THE I M A G I N A R Y  T IME PATH 

We want to find a solution of the equation of motion (3.8) in 
imaginary time O<~z<<,hfl in terms of the Fourier series (3.11). Now, a 
Fourier series representation periodically continues the path ~(z) outside 
the interval [0, hfl]. This leads to jump and cusp singularities at the 
endpoints, which must be accounted for by additional terms in the 
equation of motion. Hence, (3.8) is replaced by 

- fd~ da k(z - a)  q(a)  M~ 

= - i  dsK*(s-iz) x(s)+Ma:6'(z):+Mb:6(z): (A.1) 
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Here, :6(z): and :6'(z): are the 6-function and its time derivative 
periodically continued for ~ = nh[3 (n = 0, _+ 1,...) and the coefficients a and 
b have to be determined such that the solution of (A.1) satisfies the 
boundary conditions 

0(0+) = ~'; ~(h/~-) = ~(0 ) = ~  (A.2) 

The Fourier expansion of k(v) is given in (3.7), while the kernel K*(s - iv) 
can be written as 

K*(s--iT) =-~n= o~ 

where ~,(s) is defined in (3.14). Inserting the Fourier expansions (3.7), 
(3.11), and (1.3) into the equation of motion (A.1), we obtain 

l--v~-Ivnl ~(Ivn[)]~n--iav~+b-i dsx(s) 7 ( s ) - ~ ( s ) - ~ , ~  ~n(s) 

(1.4) 

For  n = 0 this equation leaves the Fourier coefficient ~]o undetermined, but 
fixes the constant b according to 

b=i dsx(s)7(s) {1.5) 

For n r  we obtain from (1.4) the Fourier coefficients (3.13). In 
reinserting these results in (3.11), one must take care in performing the 
limit r ~ 0, h~ because of the discontinuities at the endpoints. We therefore 
decompose 

~' (-ivnun) exp(ivnv) 
n =  o:3 

= ~ ,  1 exp( iv~r ) -  , 1 - -  - -  u~ Ivnl ~(Ivnl) exp(ivnv) (A.6) 
n =  - o o  i V n  n =  ~ l~)n 

where u, = Iv 2 + bv,I ~(Iv,I ) ] -  1 and where the prime denotes the omission 
of the n = 0 element in the sum. Here, the second sum on the rhs is regular 
and vanishes for v ~ 0, whereas the first sum describes a sawtooth-like 
behavior with 

lim ~ ,  1 1 7 -  exp(iv~r) = + ~ (1.7) 
z ~ 0 +- n = o o  l V n  

Using (A.2), we can now determine the remaining constants a and qo. We 
obtain 

a = O ' - ~  (A.8) 
as well as (3.12). 
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APPENDIX B. EVALUATION OF THE AUXILIARY FUNCTIONS 
C+(t) AND ~( t ,  t') 

Let us first consider the Laplace transform of the function ~(t)= 
G+(t) C+(t). Using (3.17) and (3.22), we find 

1 
C ( z ) = - ~ ( z )  ~ ~ + ( I v ~ l ) [ z ( , ( z ) + l v , l ~ ( I v , I ) l  (B.a) 

r t =  o o  

From (3.14) we obtain 

1 
Cn(z) = _-r-~..2 [z Iv~l ~(Iv~l)- v~f(z)] (B.2) 

Z - -  V n 

We can now eliminate ~(z) in favor of G+(z) by virtue of (3.19). In terms of 
the Laplace transform (3.46) of the symmetrized displacement correlation 
function and the momentum variance (3.35), ((z) takes the form 

~(z) =z~(z) ' (p2> d + ~  +(z) (a.3) 

Since S(O)= O, this transfers to the time domain to read 

s(o (p2) 
c+( t )  - -  § (~.4) 

a +(t) Mh 

The function ~(t, t'), which determines the time dependence of R + -+ (t) via 
(3.43)-(3.45), can now be evaluated analogously by considering the double 
Laplace transform of G+(t) G+(t')7t(t,t'). Again the result can be 
conveniently expressed in terms of the Green's function G+(t) and the 
symmetrized correlation S(t). After some algebra we find 

( p 2 )  MF ~(t) . ~(r) q 
~(t, r) = ~ + ~ [_a--~ + 7-:::'~"a+(t )J 

M 
h Ea+(t) a+(r)3-1Es(t)+s(r)] 

1 
+~-~[_G+(t)G+(t')] ' ~ G+(lv,I)[_cosh{v,(t-t')}-l] 

n =  - - o o  

1 
- - - [a+( t )G+(t ' ) ]  -1 

2hl3 

x ds[G+(t- t ' -s)-G+(t ' - t+s)]cosh(%s) (B.5) 
n =  - - o o  
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